a-SiGe:H films and devices deposited by HWCVD at low filament temperatures

A.H. Mahan, Y. Xu, R.C. Reedy Jr., H.M. Branz, and B. Yan*

NREL
*United Solar

Outline of presentation

- Structure of HWCVD a-SiGe:H films quite different than that previously reported for PECVD films
- We have an oxygen (O) contamination problem that has definitely impacted our film properties, and by implication our device results
 - In spite of our O contamination, our device results are improved relative to those deposited previously
 - give you one interpretation of our O 'source'

Structure - I (SAXS)

Low T_F and low T_S produce lower SAXS signal over entire range of film Ge contents

SAXS measurements - D.L. Williamson (CSM)

BONUS - Optimized [low T_F] HWCVD films also exhibit lower Ge-Ge clustering than optimized PECVD films - Anomalous SAXS (ASAXS)

Background:

- Un-optimized (high T_F) HWCVD films exhibit ASAXS signal $\sim 50\%$ of total signal

- Similar % for optimized PECVD films as well (INCLUDING THOSE WITH H₂ DILUTION)

D.L. Williamson, NREL Report SR-520-31908 (2002) 50.

Structure - II (ASAXS)

Optimized HWCVD films (low T_F , low T_S) now also exhibit lower ASAXS

Fraction of SAXS intensity due to Ge-Ge clustering now only < 20%

Structure - III (Ge-H bonding)

More Ge-H bonding for HWCVD versus PECVD films

Stretch mode 'signatures' for a-SiGe:H

Another comparison w/ team member

Univ. Toledo (ICAMS 2001) (PECVD) (high dilution (30), $R_d < 1\text{Å/s}$) (low dilution (1), $R_d \sim 2-3\text{Å/s}$)

NREL (DOE 2004) (HWCVD)

We believe these structural 'improvements' contribute to superior majority carrier collection for low bandgap materials

Oxygen contamination 'issue' -SIMS O profiles of films identically deposited, but at different times

July '04 - O levels for films sent to Dave Cohen

Dec. '04 - O levels during device collaboration

Oxygen levels matter a lot!!!

Device improvements obtained in spite of oxygen contamination

Comparison (1) - NREL devices having QE (800nm) ~ 40%

MRS 04 devices fabricated using a 0.38mm W filament operating @ 1800C

MRS 04 - Xu et al., MRS 808 (2004) 617.

	Single MRS 04	Single L1403	Double MRS 04	Double L1415
V _{oc} (mV)	.556	.601	.620	.625
J _{sc} (mA/cm ²)	19.59	19.59	20.03	20.91
FF (%)	.56	.549	.48	.536
Eff. (%)	6.10	6.47	5.95	7.00

'In spite of O' - Comparison 2

Univ. Toledo (ICAMS 19) - no bandgap profiling

Reminder - HWCVD R_d higher (<1Å/s to 2-4Å/s)

Influence of grading scheme on device η for similar device V_{oc} (similar 'average' Ge content)

Device	Profile	\mathbf{J}_{sc}	V _{oc}	FF	η (%)
L1422	None	18.9	.591	.553	6.2
L1403	Single	19.6	.601	.549	6.5
L1415	Double	20.9	.625	.536	7.0

One interpretation of O contamination - periodic contamination of house H_2 line

Only happens when use H₂ dilution

Can explain how single layer, identically deposited films contain different O levels when deposited at different times

Next stage of work:

- definitively identify and eliminate O contamination source
- repeat device fabrication with 'clean' i-layers

'typical' SIMS profile - three layer structure Substrate/GeH₄/GeH₄ + SiH₄ + H₂/SiH₄

SIMS measurements following HWCVD 'treatments'

Film#	Filter	Bury	Filam.	Walls	New	О	О	Com-
		layer	bake	bake	Filam.	SiGe	Si	ments
1309						8e17		single
1445						~2e20		single
1456	Yes					5e19	1.5e18	3
1461	Yes	Yes				1e19	2.5e18	3
1462	Yes	Yes	Yes			7e18	2.5e18	3
1463	Yes	Yes	Yes			5e18	2e18	3
1464	Yes			Yes		5e18	2e18	3
1465	Yes	Yes	Yes		Yes	4e18	2e18	3
1475	Yes		PECVD			5 e19	5 e19	No Ge
1489	Yes	Yes	Yes			3e18	3e18	No Ge

H₂ line periodically contaminated??? Substrate/SiH₄/SiH₄ + H₂/SiH₄

O Contamination now gone????

SIMS O profiles for films measured by Dave Cohen

